CHAPTER 3

PLAYING WITH NUMBERS

Co- Prime Numbers- Two numbers having only 1 as a common factor are called co-prime numbers.

Exercise- 3.4

COMMON FACTORS AND COMMON MULTIPLES

1. Find the common factors of:
a. 20 and 28

2028
$1 \times 20 \quad 1 \times 28$
$2 \times 10 \quad 2 \times 14$
$4 \times 5 \quad 4 \times 7$
Factors of $20-1,2,4,5,10,20$
Factors of 28- $1,2,4,7,14,28$
Common factors are-1, 2 and 4.
b. 35 and 50
$35 \quad 50$
$1 \times 35 \quad 1 \times 50$
7×5 2×25
5×10
Factors of 35-1, 7, $\mathbf{5 , 3 5}$
Factors of 50-1, $2, \underline{\mathbf{5}, 10,25,50}$
Common factors are - 1 and 5 .
PRACTISE SUMS
Find common factors of:
a. 15 and 25
b. 56 and 120
2. Find the common factors of:
a. 4,8 and 12

4	8	12
1×4	1×8	1×12
2×2	2×4	2×6
		3×4

Factors of 4- $1, \underline{2}, \underline{4}$
Factors of 8- $1,2,4,8$
Factors of 12- 1, 2, 3, 4, 6, 12
Common factors are $-1,2$ and 4.
b. 5, 15 and $\mathbf{2 5}$

51525
1×5
1×15
1×25
3×5
5×5
Factors of 5- $1, \underline{5}$
Factors of 15- $1,3, \underline{5}, 15$
Factors of 25- 1, 5, 25
Common factors are- 1 and 5.
PRACTISE SUMS
Find common factors of:
a. 12, 24 and 36
b. 14, 63 and 84
3. Find first three common multiples of:
a. 6 and 8

Multiples of 6-6, 12, 18, $\underline{24}, 30,36,42, \underline{48}, 54,60,66, \underline{2}$
Multiples of $8-8,16, \underline{24}, 32,40, \underline{48}, 56,64, \underline{72}, 80$
Common multiples are- 24, 48 and 72
b. Practise sums

12 and 18
4. Practise sums

Write all the numbers less than 100 which are common multiples of 3 and 4.
5. Which of the following numbers are co-prime?
a. 18 and 35
18 35
1×18
1×35
2×9
5×7
3×6
Factors of 18- $1,2,3,6,9,18$
Factors of 35-1, 5, 7, 35
Common factor is- 1
Therefore 18 and 35 are co-prime.
PRACTISE SUMS
a. 15 and 37
b. 30 and 415
c. 17 and 68
d. 216 and 215 (two consecutive numbers are always coprime in nature)
e. 81 and 16
6. A number is divisible by both 5 and 12. By which other number will that number be always divisible?

SOLUTION- If a number is divisible by 5 and 12 , then that number will also be divisible by their multiple- $5 \times 12=60$

Example 120 is divisible by 5 and 12 also divisible by 60.
7. A number is divisible by 12. By what other numbers will that number be divisible?
SOLUTION- Other numbers that will divide are all the factors of 12 .

12
1×12
2×6

2, 3, 4, 6 will also divide that number.

SOME MORE DIVISIBILITY RULES

i. If a number is divisible by another number then it is divisible by each of the factors of that number. Example- factor of 18 is 9 also 3 is a factor of 9 therefore we conclude that 3 is also a factor of 18.
ii. If a number is divisible by two co-prime numbers then it is divisible by their product also.
Example- The number 80 is divisible by 4 and 5 . It is also divisible by $4 \times 5=20$, and 4 and 5 are co-primes.
iii. If two given numbers are divisible by a number, then their sum is also divisible by that number.
Example- 16 and 20 are both divisible by 4 . The number $16+20=36$ is also divisible by 4 .
iv. If two given numbers are divisible by a number, then their difference is also divisible by that number.

Example- The numbers 35 and 20 are both divisible by
5. Their difference $35-20=15$ also divisible by 5 .

EXERCISE 3.5

1. Which of the following statements are true?
a. If a number is divisible by 3 , it must be divisible by 9. True
b. If a number is divisible by 9 , it must be divisible by 3 . True
c. A number is divisible by 18 , if it is divisible by both 3 and 6 . True
d. If a number is divisible by 9 and 10 both, then it must be divisible by 90 . True
e. If two numbers are co-primes, at least one of them must be prime. False
f. All numbers which are divisible by 4 must also be divisible by 8 . False
g. All numbers which are divisible by 8 must also be divisible by 4. True
h. If a number exactly divides two numbers separately, it must exactly divide their sum. True
i. If a number exactly divides the sum of two numbers, it must exactly divide the two numbers separately. False
2. Which factors are not included in the prime factorisation of a composite number?
Note : Writing a number as the product of its prime factors is called prime factorisation.
Ans - 1 and number itself are not included in the prime factorisation of a composite number.
3. Write the greatest 4 - digit number and express it in terms of its prime factors.
Ans - The greatest 4-digit number is 9999
Prime factors are
9999 is divisible by 3 because $9+9+9+9=27$
Therefore $\quad 9999=3 \times 3333$ $3 \times 3 \times 1111$ $3 \times 3 \times 11 \times 101$

Here all the factors obtained are prime numbers. Ans $9999=3 \times 3 \times 11 \times 101$
4. Write the smallest 5 -digit number and express it in the form of its prime factors.

Ans. The smallest 5-digit number is 10000
Prime factors are-
$10000=2 \times 5000$
$2 \times 2 \times 2500$
$2 \times 2 \times 2 \times 1250$
$2 \times 2 \times 2 \times 625$
$2 \times 2 \times 2 \times 5 \times 125$
$2 \times 2 \times 2 \times 5 \times 25$
$2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$ ans.
5. Find all the prime factors of 1729 and arrange them in ascending order. Now state the relation, if any; between two consecutive prime factors.
Solution- $1729=7 \times 247$
$7 \times 13 \times 19$

$$
7<13<19
$$

6. The product of three consecutive numbers is always divisible by 6 . Verify this statement with the help of some example.

Ans - Let three consecutive number be- 2,3, 4
$\mathbf{2 \times 3 \times 4 = 2 4}$
In 24 the digit at ones place is even.
Therefore it is divisible by 2 .
$2+4=6$ which is divisible by 3 .
Therefore 24 is divisible by 6 .
7. The sum of two consecutive odd numbers is divisible by 4. Verify this statement with the help of some examples.
Ans. Let the numbers be 3 and 5
$3+5=8,8$ is a multiple of 4 , hence verified.
8. Determine if $\mathbf{2 5 1 1 0}$ is divisible by 45.

Ans. The factors of 45 are 5 and 9

25110 having 0 at ones place therefore 25110 is divisible by 5 .
$2+5+1+1+0=9$ which is divisible by 9 .
Hence this proves that if a number is divisible by another number then it is divisible by each of the factors of that number.
9. 18 is divisible by 2 and 3 . It is also divisible by $2 \times 3=6$. Similarly, a number is divisible by both 4 and 6. Can we say that number must also be divisible by $4 \times 6=24$? If not, give an example to justify your answer.

Solution :

12 is divisible by 4 and 6 , but not divisible by $4 \times 6=24$.
10. I am the smallest number, having four different prime factors. Can you find me?
Solution: Let us assume the prime factors of the the smallest number be-
$2 \times 3 \times 5 \times 7=210$, therefore the smallest number is 210.

