
Unit III: Database Management

Database Concepts: Introduction to database concepts and its need.

CONTENTS -

Relational data model: Concept of domain, relation, tuple, attribute, degree,

cardinality, key, primary key, candidate key, alternate key and foreign key;

Structured Query Language:

General Concepts: Advantages of using SQL, Data Definition Language and Data

Manipulation Language;

Data Types: number / decimal, character / varchar , date; SQL commands: CREATE

TABLE, DROP TABLE, ALTER TABLE, UPDATESET...., INSERT, DELETE;

SELECT, DISTINCT, FROM, WHERE, IN, BETWEEN, LIKE, NULL / IS NULL,

ORDER BY,GROUP BY, HAVING;

SQL functions: SUM (), AVG (), COUNT (), MAX () and MIN ();

Joins: equi-join and natural join

 Interface of Python with an SQL database - Connecting SQL with Python -

Creating Database connectivity Applications - Performing Insert, Update, Delete

queries - Display data by using fetchone(), fetchall(), rowcount

Data type Description

CHAR(size) A FIXED length string (can contain letters, numbers, and special

characters).

 The size parameter specifies the column length in characters - can be from

0 to 255. Default is 1

VARCHAR(size) A VARIABLE length string (can contain letters, numbers, and special

 characters). The size parameter specifies the maximum column length in

 characters - can be from 0 to 65535

BINARY(size) Equal to CHAR(), but stores binary byte strings. The size parameter

specifies

 the column length in bytes. Default is 1

VARBINARY(size) Equal to VARCHAR(), but stores binary byte strings. The size parameter

 specifies the maximum column length in bytes.

TEXT(size) Holds a string with a maximum length of 65,535 bytes

BIT(size) A bit-value type. The number of bits per value is specified in size. The size

 parameter can hold a value from 1 to 64. The default value for size is 1.

TINYINT(size) A very small integer. Signed range is from -128 to 127. Unsigned range is

from

 0 to 255. The size parameter specifies the maximum display width (which

is

 255)

BOOL Zero is considered as false, nonzero values are considered as true.

BOOLEAN Equal to BOOL

SMALLINT(size) A small integer. Signed range is from -32768 to 32767. Unsigned range is

from

 0 to 65535. The size parameter specifies the maximum display width

(which

 is 255)

MEDIUMINT(size) A medium integer. Signed range is from -8388608 to 8388607. Unsigned

 range is from 0 to 16777215. The size parameter specifies the maximum

 display width (which is 255)

INT(size) A medium integer. Signed range is from -2147483648 to 2147483647.

 Unsigned range is from 0 to 4294967295. The size parameter specifies

the

 maximum display width (which is 255)

INTEGER(size) Equal to INT(size)

BIGINT(size) A large integer. Signed range is from -9223372036854775808 to

 9223372036854775807. Unsigned range is from 0 to

 18446744073709551615. The size parameter specifies the maximum

 display width (which is 255)

FLOAT(size, d) A floating point number. The total number of digits is specified in size. The

 number of digits after the decimal point is specified in the d parameter.

 This syntax is deprecated in MySQL 8.0.17, and it will be removed in

future

 MySQL versions

FLOAT(p) A floating point number. MySQL uses the p value to determine whether to

 use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the

 data type becomes FLOAT(). If p is from 25 to 53, the data type becomes

 DOUBLE()

DOUBLE(size, d) A normal-size floating point number. The total number of digits is specified

 in size. The number of digits after the decimal point is specified in the d

 parameter DOUBLE PRECISION(size, d) format.

DECIMAL(size, d) An exact fixed-point number. The total number of digits is specified in size.

 The number of digits after the decimal point is specified in the d parameter. The

 maximum number for size is 65. The maximum number for d is 30. The default

value

 for size is 10. The default value for d is 0.

DEC(size, d) Equal to DECIMAL(size,d)

Note: All the numeric data types may have an extra option: UNSIGNED or ZEROFILL. If you

add the UNSIGNED option, MySQL disallows negative values for the column. If you add the

ZEROFILL option, MySQL automatically also adds the UNSIGNED attribute to the column.

Date and Time data types:

Data type Description

DATE A date. Format: YYYY-MM-DD. The supported range is from '1000-01-01' to '9999-

12-

 31'

DATETIME A date and time combination. Format: YYYY-MM-DD hh:mm:ss. The

 supported range is from '1000-01-01 00:00:00' to '9999-12-31

23:59:59'.

 Adding DEFAULT and ON UPDATE in the column definition to get automatic

 initialization and updating to the current date and time

TIME A time. Format: hh:mm:ss. The supported range is from '-838:59:59' to

 '838:59:59'

YEAR A year in four-digit format. Values allowed in four-digit format: 1901 to

 2155, and 0000.

mysql> CREATE DATABASE test;

Query OK, 1 row affected (0.03 sec)

mysql> DROP DATABASE test;

Query OK, 0 rows affected (0.11 sec)

Mysql> use test

1. Write a SQL statement to create a simple table countries including columns country_id,

country_name and region_id.

Sample Solution:

CREATE TABLE countries

(

COUNTRY_ID varchar(2),

COUNTRY_NAME varchar(40),

REGION_ID decimal(10,0)

);

Let execute the above code in MySQL 5.6 command prompt Here is the structure of the

table:

mysql> DESC countries;

+-------------- +--------------- +------ +----- +--------- +-------+

| Field | Type | Null | Key | Default | Extra |

+-------------- +--------------- +------ +----- +---------+-------+

| COUNTRY_ID | varchar(2) | YES | | NULL | |

| COUNTRY_NAME | varchar(40) | YES | | NULL | |

| REGION_ID | decimal(10,0) | YES | | NULL | |

+-------------- +--------------- +------ +----- +--------- +-------+

3 rows in set (0.01 sec)

mysql> CREATE TABLE IF NOT EXISTS products (

 productID INT UNSIGNED NOT NULL AUTO_INCREMENT,

 productCode CHAR(3) NOT NULL DEFAULT '',

 name VARCHAR(30) NOT NULL DEFAULT '',

 quantity INT UNSIGNED NOT NULL DEFAULT 0,

 price DECIMAL(7,2) NOT NULL DEFAULT 99999.99,

 PRIMARY KEY (productID)

);

Query OK, 0 rows affected (0.08 sec)

 -- Show all the tables to confirm that the "products" table has been created

mysql> SHOW TABLES;

+---------------------+

| products |

+---------------------+

-- Describe the fields (columns) of the "products" table

mysql> DESCRIBE products;

+------------- +------------------ +------ +----- +-----+------- ---------+

| Field | Type | Null | Key | Default | Extra |

+------------- +------------------ +------ +----- +------------ +----------------+

| productID | int(10) unsigned | NO | PRI | NULL | auto_increment |

| productCode | char(3) | NO | | | |

| name | varchar(30) | NO | | | |

| quantity | int(10) unsigned | NO | | 0 | |

| price | decimal(7,2) | NO | | 99999.99 | |

 2.Write a SQL statement to create a table countries set a constraint NULL.

Sample Solution:

CREATE TABLE IF NOT EXISTS countries

(

COUNTRY_ID varchar(2) NOT NULL,

COUNTRY_NAME varchar(40) NOT NULL,

REGION_ID decimal(10,0) NOT NULL

);

Let execute the above code in MySQL 5.6 command prompt

Here is the structure of the table:

mysql> desc countries;

+-------------- +--------------- +------ +----- +------ ---+-------+

| Field | Type Null | Key | Default | Extra |

+-------------- +--------------- +------ +----- +--------- +-------+

| COUNTRY_ID | varchar(2) | NO | | NULL | |

| COUNTRY_NAME | varchar(40) | NO | | NULL | |

| REGION_ID | decimal(10,0) | NO | | NULL | |

+-------------- +--------------- +------+----- +--------- +-------+

3 rows in set (0.00 sec)

3.Write a SQL statement to create a table named jobs including columns job_id, job_title,

min_salary, max_salary and check whether the max_salary amount exceeding the upper limit

25000.

Sample Solution:

CREATE TABLE jobs (

JOB_ID varchar(10) NOT NULL ,

JOB_TITLE varchar(35) NOT NULL,

MIN_SALARY decimal(6,0),

MAX_SALARY decimal(6,0)

CHECK(MAX_SALARY<=25000)

);

4.Write a SQL statement to create a table named job_history including columns employee_id,

start_date, end_date, job_id and department_id and make sure that the value against

column end_date will be entered at the time of insertion to the format like '--/--/----'.

Sample Solution:

CREATE TABLE job_history (

EMPLOYEE_ID decimal(6,0) NOT NULL,

START_DATE date NOT NULL,

END_DATE date NOT NULL

CHECK (END_DATE LIKE '--/--/----'),

JOB_ID varchar(10) NOT NULL,

DEPARTMENT_ID decimal(4,0) NOT NULL

);

5.Write a SQL statement to create a table named countries including columns

country_id,country_name and region_id and make sure that no duplicate data against

column country_id will be allowed at the time of insertion.

Sample Solution:

CREATE TABLE countries

(

COUNTRY_ID varchar(2) NOT NULL,

COUNTRY_NAME varchar(40) NOT NULL,

REGION_ID decimal(10,0) NOT NULL,

UNIQUE(COUNTRY_ID)

);

6.Write a SQL statement to create a table named jobs including columns job_id, job_title,

min_salary and max_salary, and make sure that, the default value for job_title is blank and

min_salary is 8000 and max_salary is NULL will be entered automatically at the time of

insertion if no value assigned for the specified columns.

Sample Solution:

CREATE TABLE I jobs

(

JOB_ID varchar(10) NOT NULL UNIQUE,

JOB_TITLE varchar(35) NOT NULL DEFAULT ' ',

MIN_SALARY decimal(6,0) DEFAULT 8000,

MAX_SALARY decimal(6,0) DEFAULT NULL

);

7. Write a SQL statement to create a table countries including columns country_id,

country_name and region_id and make sure that the column country_id will be

unique and store an auto incremented value.

CREATE TABLE countries

(

COUNTRY_ID integer NOT NULL UNIQUE AUTO_INCREMENT PRIMARY KEY,

COUNTRY_NAME varchar(40) NOT NULL,

REGION_ID decimal(10,0) NOT NULL

);

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways.

The first way specifies both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

If you are adding values for all the columns of the table, you do not need to specify

the column names in the SQL query. However, make sure the order of the values is

in the same order as the columns in the table. The INSERT INTO syntax would be as

follows:

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

a) Write the SQL queries:

(i) To display Name and Price of all the Accessories in ascending order of their Price.

(ii) To display Id and SName of all Shoppe located in Nehru Place.

(iii) To display Minimum and Maximum Price of each Name of Accessories.

(iv) To display Name, Price of all Accessories and their respective SName, where they are

available.

a) (i) SELECT Name, Price FROM ACCESSORIES ORDER BY Price:

 (ii) SELECT Id, SName FROM SHOPPE WHERE Area ='Nehru Place';

 (iii) SELECT MIN(Price) "Minimum Price", MAX(Price)"Maximum Price", Name FROM

 ACCESSORIES GROUP BY Name:

 (iv) SELECT Name, Price, SName FROM ACCESSORIES A, SHOPPE S WHERE A.Id = S.Id;

(b) Write the output of the following SQL commands:

(i) SELECT DISTINCT NAME FROM ACCESSORIES WHERE PRICE>=5000;

(ii) SELECT AREA, COUNT(*) FROM SHOPPE GROUP BY AREA;

(iii) SELECT COUNT (DI ST INCT AREA) FROM SHOPPE:

(iv) SELECT NAME, PRICE*0.05 DISCOUNT FROM ACCESSORIES WHERE SNO IN

('S02'.'S03');

iv) The given query will result in an error as there is no column named SNo in ACCESSORIES

table.

a) Write the SQL queries:

(i) To display Name and Price of all the Accessories in ascending order of their Price.

(ii) To display Id and SName of all Shoppe located in Nehru Place.

(iii) To display Minimum and Maximum Price of each Name of Accessories.

(iv) To display Name, Price of all Accessories and their respective SName, where they are

available.

a) (i) SELECT Name, Price FROM ACCESSORIES ORDER BY Price:

 (ii) SELECT Id, SName FROM SHOPPE WHERE Area ='Nehru Place';

 (iii) SELECT MIN(Price) "Minimum Price", MAX(Price)"Maximum Price", Name FROM

 ACCESSORIES GROUP BY Name:

 (iv) SELECT Name, Price, SName FROM ACCESSORIES A, SHOPPE S WHERE A.Id = S.Id;

(b) Give the output of the following SQL queries:

(i) SELECT COUNT(DISTINCT Scode) FROM STORE;

(ii) SELECT Rate * Qty FROM STORE WHERE ItemNo = 2004;

(iii) SELECT Item, Sname FROM STORE S, SUPPLIERS P

WHERE S.Scode=P.Scode AND ItemNo=2006;

(iv) SELECT MAX(LastBuy) FROM STORE;

(a) Write SQL commands for the following statements:

(i) To display details of all the items in the STORE table in ascending order of LastBuy.

(ii) To display ItemNo and Item name of those items from STORE table, whose Rate is more

than Rs. 15.

(Hi) To display the details of those items whose Supplier code (Scode) is 22 or Quantity in

Store (Qty) is more than 110 from the table STORE.

(iv) To display minimum rate of items for each Supplier individually as per Scode from the

table STORE.

(a) (i) SELECT * FROM STORE ORDER BY LastBuy;

(ii) SELECT ItemNo, Item FROM STORE WHERE Rate>15;

(iii) SELECT * FROM STORE WHERE Scode = 22 OR Qty>110;

(iv) SELECT MIN(Rate) FROM STORE GROUP BY Scode;

SQL ALTER TABLE Statement

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

The ALTER TABLE statement is also used to add and drop various constraints on an existing

table.

SQL ALTER TABLE Example

Look at the "Persons" table:

ID LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to add a column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons

ADD DateOfBirth date;

Notice that the new column, "DateOfBirth", is of type date and is going to hold a date. The

data type specifies what type of data the column can hold. For a complete reference of all

the data types available in MS Access, MySQL, and SQL Server, go to our complete Data

Types reference.

The "Persons" table will now look like this:

ID LastName FirstName Address City DateOfBirth

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Change Data Type Example

Now we want to change the data type of the column named "DateOfBirth" in the "Persons"

table.

We use the following SQL statement:

ALTER TABLE Persons

ALTER COLUMN DateOfBirth year;

Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two-

or four-digit format.

DROP COLUMN Example

Next, we want to delete the column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons

DROP COLUMN DateOfBirth;

The "Persons" table will now look like this:

ID LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The SQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Example

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

SELECT 5 * 8 FROM DUAL;

40

SELECT 45/5 FROM DUAL;

9

mysql> SELECT * FROM products;

+-----------+-------------+-----------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+-----------+----------+-------+

| 1001 | PEN | Pen Red | 5000 | 1.23 |

| 1002 | PEN | Pen Blue | 8000 | 1.25 |

| 1003 | PEN | Pen Black | 2000 | 1.25 |

| 1004 | PEC | Pencil 2B | 10000 | 0.48 |

| 1005 | PEC | Pencil 2H | 8000 | 0.49 |

+-----------+-------------+-----------+----------+-------+

Logical Operators - AND, OR, NOT, XOR

You can combine multiple conditions with boolean operators AND, OR, XOR. You can also

invert a condition using operator NOT. For examples,

mysql> SELECT * FROM products WHERE quantity >= 5000 AND name LIKE 'Pen %';

+-----------+-------------+----------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+----------+----------+-------+

| 1001 | PEN | Pen Red | 5000 | 1.23 |

| 1002 | PEN | Pen Blue | 8000 | 1.25 |

+-----------+-------------+----------+----------+-------+

mysql> SELECT * FROM products WHERE quantity >= 5000 AND price < 1.24 AND name

LIKE 'Pen %';

+-----------+-------------+---------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+---------+----------+-------+

| 1001 | PEN | Pen Red | 5000 | 1.23 |

+-----------+-------------+---------+----------+-------+

mysql> SELECT * FROM products WHERE NOT (quantity >= 5000 AND name LIKE 'Pen %');

+-----------+-------------+-----------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+-----------+----------+-------+

| 1003 | PEN | Pen Black | 2000 | 1.25 |

| 1004 | PEC | Pencil 2B | 10000 | 0.48 |

| 1005 | PEC | Pencil 2H | 8000 | 0.49 |

+-----------+-------------+-----------+----------+-------+

IN, NOT IN

You can select from members of a set with IN (or NOT IN) operator. This is easier and clearer

than the equivalent AND-OR expression.

mysql> SELECT * FROM products WHERE name IN ('Pen Red', 'Pen Black');

+-----------+-------------+-----------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+-----------+----------+-------+

| 1001 | PEN | Pen Red | 5000 | 1.23 |

| 1003 | PEN | Pen Black | 2000 | 1.25 |

+-----------+-------------+-----------+----------+-------+

BETWEEN, NOT BETWEEN

To check if the value is within a range, you could use BETWEEN ... AND ... operator. Again,

this is easier and clearer than the equivalent AND-OR expression.

mysql> SELECT * FROM products

 WHERE (price BETWEEN 1.0 AND 2.0) AND (quantity BETWEEN 1000 AND 2000);

+-----------+-------------+-----------+----------+-------+

| productID | productCode | name | quantity | price |

+-----------+-------------+-----------+----------+-------+

| 1003 | PEN | Pen Black | 2000 | 1.25 |

+-----------+-------------+-----------+----------+-------+

IS NULL, IS NOT NULL

NULL is a special value, which represent "no value", "missing value" or "unknown value". You

can checking if a column contains NULL by IS NULL or IS NOT NULL. For example,

mysql> SELECT * FROM products WHERE productCode IS NULL;

Empty set (0.00 sec)

Using comparison operator (such as = or <>) to check for NULL is a mistake - a very

common mistake. For example,

SELECT * FROM products WHERE productCode = NULL;

-- This is a common mistake. NULL cannot be compared.

CREATE TABLE shop (

 article INT UNSIGNED DEFAULT '0000' NOT NULL,

 dealer CHAR(20) DEFAULT '' NOT NULL,

 price DECIMAL(16,2) DEFAULT '0.00' NOT NULL,

 PRIMARY KEY(article, dealer));

INSERT INTO shop VALUES

 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),

 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

AS - Alias

You could use the keyword AS to define an alias for an identifier (such as column name, table

name). The alias will be used in displaying the name. It can also be used as reference. For

example,

mysql> SELECT productID AS ID, productCode AS Code, name AS Description, price AS `Unit

 Price` FROM products -- Define aliases to be used as display names

 ORDER BY ID; -- Use alias ID as reference

+------+------+-------------+------------+

| ID | Code | Description | Unit Price |

+------+------+-------------+------------+

| 1001 | PEN | Pen Red | 1.23 |

| 1002 | PEN | Pen Blue | 1.25 |

| 1003 | PEN | Pen Black | 1.25 |

| 1004 | PEC | Pencil 2B | 0.48 |

| 1005 | PEC | Pencil 2H | 0.49 |

+------+------+-------------+------------+

Take note that the identifier "Unit Price" contains a blank and must be back-quoted.

Function CONCAT()

You can also concatenate a few columns as one (e.g., joining the last name and first name)

using function CONCAT(). For example,

+---------------------+-------+
