Electricity

Electric Current

- Electric current is expressed as the amount of charge flowing through a particular area in unit time.
- Quantitatively, electric current is defined as the rate of flow of electric charge. •

Current, $I = \frac{Charge flowing (Q)}{Current}$ Time taken (t)

- The S.I. unit of current is **ampere (A)**, where 1 ampere = 1 coulomb/second. •
- $1 \text{ mA} = 10^{-3} \text{ A}, \quad 1 \mu \text{ A} = 10^{-6} \text{ A}$ •
- The conventional direction of electric current is the one in which positive charges move orderly.

Electric Potential Different

Electric potential difference (pd) between two points in an electric circuit, carrying some current, is the amount of work done to move a unit charge from one point to another.

Work done (W)

The S.I. unit of pd is **volt (V)**, where 1 volt = 1 joule/coulomb. •

Electric Circuit

A continuous conducting path between the terminals of a source of electricity is called an **electric circuit**.

- A drawing showing the way various electric devices are connected in a circuit is called a circuit • diagram.
- Some commonly used circuit elements are given below: •

Sr. No.	Element	Symbol
1	An electric cell	+
2	A battery	<u></u> — + F - F - F
3	Plug key or switch (open)	-()-
4	Plug key or switch (closed)	_(•)
5	A wire joint	

6	Wires crossing without joining	\rightarrow
7	Bulb	or
8	Resistor	
9	Variable resistor or Rheostat	
10	Ammeter	+
11	Voltmeter	+

Ohm's law

• According to Ohm's law, the current (I) flowing through a conductor is directly proportional to the potential difference (V) across its ends, provided its physical conditions remain the same. V \propto I

V/I = Constant V/I = R V = IR

where R is a constant of proportionality called **resistance** of the conductor.

- **Resistance** is the property of a conductor to resist the flow of charges through it.
- The S.I. unit of resistance is **ohm** (Ω).

From $R = \frac{V}{I}$ 1 ohm = 1 volt/ampere

Resistivity

 The resistance of a conductor is directly proportional to its length (I) and inversely proportional to its area of cross section (A).

 $R \propto I/A$ $R = \rho I/A$

where p is a constant of proportionality called **specific resistance** or **resistivity** of the material of the conductor.

• The S.I. unit of resistivity is ohm metre (Ωm).

Combination of Resistances

Resistances in Series

- The current flowing through each resistance is the same.
- The potential difference across the ends of the series combination is distributed across the resistances.
- The equivalent resistance (R_s) of a series combination containing resistances R₁, R₂, R₃... is $R_s = R_1 + R_2 + R_3 + ...$
- The equivalent resistance is greater than the greatest resistance in the combination.

Resistances in Parallel

- The potential difference across each resistance is the same and is equal to the potential difference across the combination.
- The main current divides itself, and a different current flows through each resistance.
- The equivalent resistance (R_p) of a parallel combination containing resistances R₁, R₂, R₃... is given by

 $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$

• The equivalent resistance is lesser than the least of all the resistances in the combination

Heating Effect of Electric Current

- The effect of electric current due to which heat is produced in a conductor, when current passes through it, is called the heating effect of electric current.
- The total work (W) done by the current in an electric circuit is called electric energy and is given as
 W = VIt = I²Rt

$W = V^2 t / R$

This energy is exhibited as heat. Thus, we have $H = VIt = I^2Rt$.

This is called **Joule's Law of Heating**, which states that the heat produced in a resistor is directly proportional to the

- o Square of the current in the resistor
- o Resistance of the resistor
- o Time for which the current flows through the resistance

Practical Applications of the Heating Effects of Electric Current

- Electrical appliances like laundry iron, toaster, oven, kettle and heater are some devices based on Joule's Law of Heating.
- The concept of electric heating is also used to produce light, as in an electric bulb.
- Another application of Joule's Law of Heating is the fuse used in electric circuits.

PHYSI ELECTRIC

Electric Power

- Electric power is the rate at which electrical energy is produced or consumed in an electric circuit
 P = VI = I²R
 - $\mathsf{P} = \mathsf{V}^2/\mathsf{R}$
- The S.I. unit of power is watt (W).
- One watt of power is consumed when 1 A of current flows at a potential difference of 1 V. The commercial unit of electric energy is kilowatt hour (kWh), commonly known as a unit.
 1 kWh = 3.6 MJ

NUMERICAL PROBLEMS

- 1. Find the charge if the number of electrons is 4×10^{-18} .
- 2. Find the number of electrons constituting one coulomb of charge.
- 3. How much work done in moving a charge of 3 coulombs from a point at 118 V to a point at 128 volt?
- 4. How much work done in moving a charge of 2C across two points having a potential difference of 12V?
- 5. Calculate the amount of work done to carry 4C from a point at 100 V to a point at 120 volt?
- 6. How much work will be done in bringing a charge of 2×10^{-3} coulombs from infinity to a point P at which the potential is 5 V?
- 7. How much work will be done in bringing a charge of 3 x 10⁻² coulombs from infinity to a point P at which the potential is 20 V?
- 8. How much energy is given to each coulomb of charge passing through a 6V battery?
- 9. How much energy is transferred by a 12 V power supply to each coulomb of charge which it moves around a circuit?
- **10.** What is the potential difference between the terminals of a battery if 250 joules of work is required to transfer 20 coulombs of charge from one terminal of battery to the other?