NOTE : Dear students,

We are sending these extra questions with solutions from the three lessons which we have taught . These are for your practice . Simply don't copy the sums. Plz try to understand and solve . All of you are requested to solve these in the same notebook , in which you have done the exercises . Children this is definitely going to help you for your assessment which you are going to have very soon .

SUBJECT ENRICHMENT ACTIVITY \{ SEA \}

Childern along with this PDF we are giving you your SEA which you have to complete during your summer holidays :

A] Draw and colour atleast 5 convex polygons and five concave polygons and mention the reasons, why they are concave or convex.

B] Draw and colour different kinds of quadrilaterals (with diagonals) and write their properties neatly .
[SEA CAN BE DONE IN THE SAME NOTEBOOK]

THANK YOU AND STAY BLESSED

STAY HOME STAY SAFE TAKE CARE
HAPPY HOLIDAYS.

Important Questions

Chapter 1 - Rational Numbers

Question ($1-8$)

1 - Mark:

1. The additive inverse of $\frac{3}{4}$ is \qquad
Solution: $-\frac{3}{4}$
2. Multiplicative inverse of is $\frac{1}{8}$

Solution: 8
3. A Rational number between 3 and 4 is \qquad
Solution: $\frac{3+4}{2}=\frac{7}{2}$
4. Reciprocal of -2 is \qquad
Solution: $-\frac{1}{2}$
5. Zero has \qquad reciprocal

Solution: No
6. Reciprocal of a negative number is \qquad
Solution: Negative
7. Whole numbers start from \qquad
Solution: Zero
8. There are \qquad rational numbers between 3 and 4 .

Solution: Countless or Infinite.

Question (9-15)

2 -Marks:

9. Sum of two numbers is $\frac{3}{4}$, one of the number is $\frac{1}{8}$. Find the other one.

Solution: Let the other number be x
$x+\frac{1}{8}=\frac{3}{4}$
$x=\frac{3}{4}-\frac{1}{8}$
$x=\frac{6-1}{8} \quad[L C M=8]$
$x=\frac{5}{8}$
10. Simplify $\left(\frac{-8}{13}\right)+\left(\frac{-3}{26}\right)$

Solution:
$\Rightarrow-\frac{8}{13}-\frac{3}{26}$
$\Rightarrow-\frac{16}{26}-\frac{3}{26} \quad[L C M=26]$
$=-\frac{19}{26}$
11. What number to be multiplied with $\frac{1}{4}$ so as to get the product as $-\frac{5}{16}$

Solution: Let the number be x
The product can be $=\frac{1}{4} \times x$
Product $=-\frac{5}{16}$
$-\frac{5}{16}=\frac{1}{4} \times x$
$\therefore x=-\frac{5}{4}$
12. Represent $-\frac{2}{7}$ on the number line.

Solution:

13. Divide $\frac{1}{2}$ by $\left[-\frac{1}{3}+\frac{2}{5}\right]$

Solution: $-\frac{1}{3}+\frac{2}{5}=\frac{-5+6}{15}=\frac{1}{15} \quad[L C M=15]$
$\frac{1}{2}+\frac{1}{15}$
$\Rightarrow \frac{1}{2} \times \frac{15}{1}$
Hence, $\frac{15}{2}$
14. Find three rational number between -4 and 4. Represent them on line.

Solution: The three rational numbers are $-2,-1,1$

15. Define by example of addition
(a) Associative Property

Solution: Associative Property :
$(7+9)=(9+7)$
$7+9=16 \& 9+7=16$
The property states that you can add or multiply regardless of how the numbers are grouped.

Question (16-19) 3-Marks:
16. Simplify $\left[\frac{6}{7}+\frac{3}{8}-\frac{1}{2}\right] \frac{4}{3}$ and find its reciprocal.

Solution: $\left[\frac{6 \times 8+3 \times 7-56}{56}\right] \frac{4}{3}$ (since the LCM of terms inside bracket $=56$)
$\left[\frac{48+21-56}{56}\right] \times \frac{4}{3}$
$\frac{13}{56} \times \frac{4}{3}=\frac{13}{42}$
Reciprocal of $\frac{13}{42}$ is $1+\frac{13}{42}=1 \times \frac{42}{13}$
$=\frac{42}{13}$
17. Find three Rational Number between 3 and 4. Represent them on Number line.

Solution:
3 can be written as $3 \times \frac{10}{10}=\frac{30}{10}$
4 can be written as $4 \times \frac{10}{10}=\frac{40}{10}$
Three Rational Numbers are $, \frac{31}{10}, \frac{32}{10}, \frac{33}{10}$

18. Use Appropriate property and find $-\frac{1}{6} \times \frac{4}{7}+\frac{1}{2}-\frac{3}{7} \times \frac{1}{6}$

Solution: $-\frac{1}{6} \times \frac{4}{7}+\frac{1}{2}-\frac{3}{7} \times \frac{1}{6}$

Vedantu

$-\frac{1}{6} \times \frac{4}{7}-\frac{3}{7} \times \frac{1}{6}+\frac{1}{2}[a \times s a c i a t i v e ~ p r o p e r t y ~ a+b=b+a]$
$-\frac{1}{6} \times \frac{4}{7}-\frac{1}{6} \times \frac{3}{7}+\frac{1}{2}$
$-\frac{1}{6}\left[\frac{4}{7}+\frac{3}{7}\right]+\frac{1}{2}$
$-\frac{1}{6} \times \frac{7}{7}+\frac{1}{2}$
$\frac{-1+3}{6}=\frac{2}{6}$
$=\frac{1}{3}$
19. Find the multiplicative inverse of following
(a) $\frac{1}{6}$
(b) $-\frac{3}{8}$
(c) $\frac{4}{19}$

Solution:
(a) $6: \frac{1}{6} \times x=1 \Rightarrow x=6$
(b) $-\frac{8}{3}:-\frac{3}{8} \times x=1 \Rightarrow x=-\frac{8}{3}$
(c) $\frac{19}{4}: \frac{4}{19} \times x=1 \Rightarrow x=\frac{19}{4}$

Question (20-22)

 4 or 5 Marks:20. Find three Rational number between $\frac{3}{6}$ and $\frac{3}{4}$

Solution: The mean of two Rational number is a Rational number
$\frac{3}{6}=\frac{1}{2}$ and $\frac{3}{4}$

Vedanth

Mean $=\frac{\frac{1}{2}+\frac{3}{4}}{2}=\frac{\frac{5}{4}}{2}=\frac{5}{8}$
$\frac{1}{2}<\frac{5}{8}<\frac{3}{4}$
Now Mean of $\frac{1}{2}$ and $\frac{5}{8}$
$\Rightarrow \frac{\frac{1}{2}+\frac{5}{8}}{2}=\frac{\frac{9}{8}}{2}=\frac{9}{16}$
$\frac{1}{2}<\frac{9}{16}<\frac{5}{8}$
Mean of $\frac{5}{8}$ and $\frac{3}{4}$
$\Rightarrow \frac{\frac{5}{8}+\frac{3}{4}}{2}=\frac{5+6}{8 \times 2}=\frac{11}{16}$
$\therefore \frac{5}{8}<\frac{11}{16}<\frac{3}{4}$
Hence the three rational numbers are $\frac{9}{16}, \frac{5}{8}, \frac{11}{16}$
21.
(a) Find Reciprocal of $-\frac{1}{2}$
(b) Additive inverse of $\frac{4}{9}$
(c) Multiplicative inverse of $\left[\frac{1}{6}+\frac{4}{9}\right] \times \frac{4}{3}$

Solution:
(a) Reciprocal of $-\frac{1}{2}$ is -2 .

As $\frac{1}{-\frac{1}{2}}=2$
(b) Additive inverse of $\frac{4}{9}$ is $-\frac{4}{9}$
$\frac{4}{9}+x=0$
$x=-\frac{4}{9}$
(c) Multiplicative inverse of $\left[\frac{1}{6}+\frac{4}{9}\right] \times \frac{4}{3}$
$=\left[\frac{1}{6}+\frac{4}{9}\right] \times \frac{4}{3}$
$=\frac{(3+8)}{18} \times \frac{4}{3}$
$=\frac{11}{18} \times \frac{4}{3}$
$=\frac{22}{27}$
22. Match the correct
(a) Whole number
(i)

(b) Natural number
(ii)

(c) Integer
(iii)

(d) Rational Number
(iv)

Solution:
(a) (ii)
(b) (iii)
(c) (i)
(d) (iv)

Vedantu

Important Questions

Chapter 2 - Linear Equations in One Variable

Question (1-10) 1 - Mark:

1. A \qquad is a statement of equality of two algebraic expressions involving one or more unknown quantities called variables.
Solution: Equation
2. An equation involving only linear polynomials is called a \qquad
Solution: Linear equation
3. If $\frac{a x+b}{c x+d}=\frac{p}{q}$ then. $q(a x+b)=p(c x+d)$ This process is called \qquad
Solution: Cross multiplication
4. Any term of an equation may be taken to other side with a change in its sign. This process is called \qquad -.

Solution: Transposing
5. Any equation of the type $\mathrm{ax}+\mathrm{b}=0$ where $\mathrm{a} \neq 0$ is called a \qquad in variable x .

Solution: Linear equation
6. Any value of the variable which satisfies the equation is called \qquad of equation.

Solution: Solution
7. We can add the \qquad to both sides of equation.

Solution: Non zero same number
8. We can divide both sides of an equation by the same \qquad number.
Solution: Non zero
9. $x=1$ is the solution for $4(x+5)=24$. Say true or false

Vedanth

Solution: True
10. Which of the following is not a linear equation in one variable?
(a) $3 y+2=0$
(b) $3 y-4=y$
(c) $p+2 q=7$
(d) $2(x-3)+7=0$

Solution:
Option (c) is not a linear equation because $p+2 q=7$ has two variables p and q.

Question (11-14)
2 - Marks:
11. Solve $14 \mathrm{x}=40+9 \mathrm{x}$

Solution:
$14 \mathrm{x}=40+9 \mathrm{x}$
$14 \mathrm{x}-9 \mathrm{x}=40$ (by transposing)
$5 \mathrm{x}=40$
$x=\frac{40}{5}$
$X=8$
12. Solve $\frac{4}{6} x+2=\frac{7}{3}$

Solution: $\frac{4}{6} x+2=\frac{7}{3}$
$\frac{4}{6} x=\frac{7}{3}-2$
$\frac{2}{3} x=\frac{7-6}{3}$
$\frac{2}{3} \mathrm{x}=\frac{1}{3}$
$\mathrm{x}=\frac{1}{3} \times \frac{3}{2}$
$x=\frac{1}{2}$
13. Solve for y and check the solution $\frac{y+1}{2 y+3}=\frac{3}{8}$

Vedanth

Solution: $\frac{y+1}{2 y+3}=\frac{3}{8}$
$8(y+1)=3(2 y+3)$
$8 y+8=6 y+9$
$8 y-6 y=9-8$
$2 y=1$
$y=\frac{1}{2}$
Verification:
By substituting value of $\mathrm{y}=\frac{1}{2}$
LHS $=\frac{\frac{1}{2}+1}{2\left(\frac{1}{2}\right)+3}$
$=\frac{\frac{3}{2}}{1+3}$
3
$=\frac{\overline{2}}{4}=\frac{3}{2} \times \frac{1}{4}$
$=\frac{3}{8}$
$=$ RHS
Hence verified
14. Solve $\frac{p+1}{p-1}=\frac{2 p+3}{2 p-5}$

Solution:

$(p-1)(2 p+3)=(p+1)(2 p-5)$
$p(2 p+3)-1(2 p+3)=p(2 p-5)+1(2 p-5)$
$2 p^{2}+3 p-2 p-3=2 p^{2}-5 p+2 p-5$
$2 p^{2}+p-3=2 p^{2}-3 p-5$
$2 p^{2}+p-2 p^{2}+3 p=-5+3$
$4 \mathrm{p}=-2$

Vedanth

$p=-\frac{2}{4}$
$p=-\frac{1}{2}$

Question (15-17)
3 - Marks:
15. $\frac{2}{4} x+\frac{1}{3} x=x-8$. Solve for x.

Solution:
$\frac{2}{4} \mathrm{x}+\frac{1}{3} \mathrm{x}=\mathrm{x}-8$
$x\left[\frac{2}{4}+\frac{1}{3}\right]=x-8$
$x\left[\frac{6+4}{12}\right]=x-8$
$\frac{10 \mathrm{x}}{12}=\mathrm{x}-8$
$\frac{5 x}{6}-x=-8$
$x\left[\frac{5-6}{6}\right]=-8$
$x\left[-\frac{1}{6}\right]=-8$
$\frac{x}{6}=8$
$\mathrm{x}=8 \times 6$
$x=48$
16. Two numbers are in ratio $10: 16$. If the sum of numbers is 572 . Find the numbers.

Solution: Let the numbers be $10 \mathrm{x}, 16 \mathrm{x}$
As per given,
$10 \mathrm{x}+16 \mathrm{x}=572$
$26 \mathrm{x}=572$
$\mathrm{x}=\frac{572}{26}=\frac{286}{13}$
$\mathrm{x}=22$
Hence the numbers are

Vedanth

$10 \mathrm{x}=10 \times 22=220$
$16 \mathrm{x}=16 \times 22=352$
Verification:
$10 x+16 x=220+352=572$
Hence the result is also verified.
17. The sum of three consecutive multiples of 3 is 867 . Find the numbers.

Solution: Let the three consecutive numbers be $x, x+3, x+6$
By given,
$x+x+3+x+6=867$
$3 x+9=867$
$3 \mathrm{x}=867-9$
$3 \mathrm{x}=858$
$\mathrm{x}=\frac{858}{3}$
$x=286$

Question (18-22) $\quad 4$-Marks:
18. Solve for $x: \frac{x+6}{4}+\frac{x-3}{5}=\frac{5 x-4}{8}$

Solution:
$\frac{x+6}{4}+\frac{x-3}{5}=\frac{5 x-4}{8}$
$\frac{5(x+6)+4(x-3)}{20}=\frac{5 x-4}{8}$
$\frac{5 x+30+4 x-12}{20}=\frac{5 x-4}{8}$
$\frac{9 x+12}{20}=\frac{5 x-4}{8}$
$8(9 \mathrm{x}+12)=20(5 \mathrm{x}-4)$
$72 x+96=100 x-80$
$100 x-72 x=96+80$
$28 \mathrm{x}=176$
$x=\frac{176}{28}=\frac{88}{14}$
$x=\frac{44}{7}$

Vedanth

19. Solve for $\mathrm{y}: \frac{3 \mathrm{y}+5}{2 \mathrm{y}+1}=\frac{2}{6}$

Solution: $\frac{3 y+5}{2 y+1}=\frac{2}{6}$
$6(3 y+5)=2(2 y+1)$
$18 y+30=4 y+2$
$18 y-4 y=2-30$
$14 \mathrm{y}=-28$
$y=-\frac{28}{14}$
$y=-2$
20. Ram's father is 26 years younger than Ram's grandfather and 29 years older than Ram. The sum of the ages of all three is 135 years. What is the age of each one of them?

Solution: Let Ram's present age be x ycars.
Ram's father's present age $=(x+29)$ years
Ram's grandfather's age $=(x+29+26)$ years
We know sum of all three ages is 135 years.
Hence $x+(x+29)+(x+29+26)=135$
$3 x+29+29+26=135$
$3 \mathrm{x}=135-84=51$
$\mathrm{x}=\frac{51}{3}$
$\mathrm{x}=17$
Hence Ram's present age $x=17$ years
Ram's father's present age $-(x+29)$
$=17+29$
$=46$ years
Ram's grandfather's age $=(x+29+16)$
$=46+26$
$=72$ years

Vedanth

21. The sum of digits of two digit number is 12 . If 18 is added to it, the digits are reversed Find the number.

Solution:
Let the unit's digit be x
As the sum of both digits is 12 , the ten's place is $12-x$
Therefore, the number $=(12-\mathrm{x}) \times 10+\mathrm{x}$
By reversing the new number formed $=\mathrm{x} \times 10+(12-\mathrm{x})$
As per given information
$\mathrm{x} \times 10+(12-\mathrm{x})=(12-\mathrm{x})+\mathrm{x}+18$
$10 x+12-x=120-10 x+x+18$
$9 x+12=-9 x+138$
$18 x=126$
$\mathrm{x}=7$
Hence the original number is 57 .
22. The breadth of a parallelogram is $\frac{2}{3}$ rd its length. If the perimeter is 150 metres. Find the dimensions of the parallelogram.
Solution: Let x be the length
Breadth $=\frac{2}{3}$ of length $=\frac{2}{3} x$
Perimeter of parallelogram $=150 \mathrm{~m}$
Perimeter $=2(1+b)$
$150=2\left(x+\frac{2}{3} \mathrm{x}\right)$
$150=2 x+\frac{4}{3} x$
$\left[\frac{6+4}{3}\right] x=150$
$\frac{10}{3} x=150$
$\mathrm{x}=\frac{150 \times 3}{10}$
$x=45$

Length $=45$, breadth $==\frac{2}{3} \times 45=30$

Question (23-23) 5-Marks:
23. The denominator of a fraction exceeds its numerator by 4 . If the numerator and denominator are both increased by 3 , the new fraction becomes $\frac{4}{5}$. Find the original fraction. Solution:

Let the numerator of the original fraction is x .
Hence denominator $=x+4$
Hence fraction $=\frac{x}{x+4}$
Now, when both numerator and denominator are increased by 3

$$
\begin{aligned}
& \frac{x+3}{x+4+3}=\frac{4}{5} \\
& \frac{x+3}{x+7}=\frac{4}{5}
\end{aligned}
$$

By Cross Multiplication, $5(x+3)=4(x+7)$
$5 x+15=28-15$

$$
x=13
$$

Hence the original fraction $=\frac{x}{x+4}=\frac{13}{13+4}=\frac{13}{17}$.

Important Questions

Chapter 3 - Understanding Quadrilaterals

Question (1-7) 1 - Mark:

1. Regular polygon have all sides

Solution: Equal
2. Sum of all internal angles of a quadrilateral is \qquad
Solution: 360°
3. Diagonals of Rectangle are \qquad and \qquad each other.

Solution: Equal, Bisect
4. A quadrilateral with one pair of sides parallel is \qquad
Solution: Trapezium
5. Diagonals of \qquad bisect each other at 90°
Solution: Rhombus and square
6. A parallelogram with one angle 90° is \qquad
Solution: Rectangle
7. The number of Diagonals in triangle is \qquad $-$

Solution: zero

Question (8-13)
2 - Marks:
8. Find x in the figure

Vedanth

Solution: Sum of all internal angles of quadrilateral $=360^{\circ}$
$30+120+90+x=360^{\circ}$
$240+x=360^{\circ}$
$x=120^{\circ}$
9. Find the sum of all internal angle of a pentagon that is regular.

Solution:
10. State true or false
(a) All squares are rectangles
(b) All Rhombus are kites

Solution:
(a) True
(b) True
11. In the following figure, given a parallelogram $A B C D$. Find x and y

Solution: Since in Parallelogram ABCD opposite sides are parallel and equal
$A B=C D$
$\Rightarrow 2 y-1=21$
$\Rightarrow 2 y=22$
$\Rightarrow y=11$
$A D=C B$
$\Rightarrow 3 x=15$
$\Rightarrow x=5$

Vedanth

12. Length of two adjacent sides of parallelogram are 8 cm and 5 cm . Find its perimeter

Solution:

Let the parallelogram be $A B C D$
Let $\mathrm{AB}-8 \mathrm{~cm}$ and $\mathrm{BC}-6 \mathrm{~cm}$
$\mathrm{AB}=\mathrm{CD}$ [since opposite sides of parallelogram are equal and parallel]
$C D=8 \mathrm{~cm}$
Similarly $\mathrm{BC}=\mathrm{AD}$
$\mathrm{AD}=6 \mathrm{~cm}$
Perimeter of parallelogram = sum of lengths of all sides
$=2(A B+C D)$
$=2(6+8)$
$=2(14)$
$=28$
13. Find sum of angles of a regular pentagon(internal angles)

Solution: By formula we know
Sum of all angles $=n(180)-2 \times 180^{\circ}[\mathrm{n}=5]$
$=5(180)-360^{\circ}$
$=900-360^{\circ}$
$=540^{\circ}$

Question (14-18) 3-Marks:

14. The measure of two adjacent angles of a parallelogram is in the ratio of $3: 7$. Find the measure of each angles of the parallelogram.

Solution: Let the parallelogram be ABCD

Vedanth

Let
$\angle A: \angle B=3: 7$
$\angle A=3 x \& \angle B=7 x$
[$A B C D$ is a parallelogram and $A D \| B C$]
$\angle A+\angle B=180^{\circ}$
$3 x+7 x=180^{\circ}$
$10 x=180^{\circ}$
$x=18^{\circ}$
$\therefore \angle A=\angle C=3 x \quad \& \quad \angle B=\angle D=7 x$
$\therefore \angle A=\angle C=54^{\circ} \quad \& \quad \angle B=\angle D=126^{\circ}$
15. In the given figure $A B C D$ is a rectangle and its diagonal meet at 0 . Find x, if $O A=2 x$ and $O D=6 x-8$. Also find $B D$,

Solution:

Given, $\mathrm{Oa}=2 \mathrm{x}$ and $\mathrm{OD}=6 \mathrm{x}-8$
Since diagonals of Rectangle are equal
$\mathrm{AC}-\mathrm{BD} \ldots \ldots$ (i)
Since Rectangle is a parallelogram and diagonals of parallelogram bisect each other.
$\mathrm{OD}=\mathrm{OB}$ and $\mathrm{OA}=\mathrm{OC} \ldots$....(ii)
$\mathrm{AC}=\mathrm{OA}+\mathrm{OC}[$ Hence, $\mathrm{AC}=2$ (OA) using (ii) $]$
$\mathrm{BD}=\mathrm{BO}+\mathrm{OD}[$ Hence, $\mathrm{BD}=2$ (OD) using (ii)]

Vedantu

$A C=B D$
$2(O A)=2(O D)$
$O A=O D$
$2 x=6 x-8$
$4 x=8$
$x=2$
$O D=6 x-8=6(2)-8=4$
$B D=8[\because B D=2(O D)]$
16. The diagonal AC of Rhombus ABCD is equal to one of its side BC . Find all the angles of Rhombus.

Solution:

Let ABCD be the Rhombus and according to the question $\mathrm{AC}=\mathrm{AB}=\mathrm{BC}$ [given]

In $\triangle A B C, A D=A C=B C$
$\triangle \mathrm{ABC}$ is a equilateral triangle
$\angle A B C=60^{\circ}$
$\angle A D C=60^{\circ}$ [opposite angles]
$\angle D+\angle A=180^{\circ} \quad$ [supplementary angles of parallelogram]
$\angle A=180^{\circ}-160^{\circ}$
$\angle A=120^{\circ}$
$\angle A=\angle C=120^{\circ}$ [Opposile angles]
17. Find the values of x, y and z. Where $A B C D$ is a Parallelogram.

Vedanth

Solution:
$\angle A=50^{\circ}$
$\angle A+\angle D=180^{\circ}$ [supplementary angles]
$\angle A+y=180^{\circ}$
$y=180^{\circ}-50^{\circ}$
$y=130^{\circ}$
$\angle y=\angle x$ [opposite angles of parallelogram]
$y=x=130^{\circ}$
$\angle D C B+z=180^{\circ}$ [linear pair]
$z=180^{\circ}-\angle D C B$
$z=180^{\circ}-50^{\circ}$
$z=130^{\circ}$
18. Explain how square is
(a) Quadrilateral
(b) Rhombus
(c) Rectangle

Solution:

(a) A Quadrilateral is a closed polygon of 4 sides and square is following the definition of a quadrilateral. Hence square is a quadrilateral.
(b) A Rhombus is a parallelogram whose adjacent sides are equal. Similarly square have the same property. Hence a square is a Rhombus.
(c) A Rectangle is a parallelogram with one angle 90°. Square has all angles 90°. Square has all the properties of a rectangle. Hence square is a Rectangle.

Question (19-22) $4-5$ Marks:
19. Find $x+y+z$ in the following figure.

Vedanth

Solution: Let's name it as A, B, C, D, E, F

$\angle A C B+z=180^{\circ}$ [linear pair]
$50^{\circ}+z=180^{\circ}$
$z=130^{\circ}$
$\angle F C B+\angle A C B=180^{\circ}$ [linear pair]
$x+90^{\circ}=180^{\circ}$
$x=90^{\circ}$
$y=\angle B A C+\angle B C A$ [Exterior angle prop.]
$y=50^{\circ}+90^{\circ}$
$y=140^{\circ}$
$\therefore x+y+z=140^{\circ}+90^{\circ}+130^{\circ}=360^{\circ}$
20.
(a) Find x in the figure

(b) Figure HEYA shown below is a parallelogram its given $\mathrm{OE}-3 \mathrm{~cm}$ and HY is 7 more than AE. Find OH

Vedanth

Solution:
(a) $\angle A B E=90^{\circ}$
$\angle A B E+\angle A B C=180^{\circ}$ [linear pair]
$\angle A B C=180^{\circ}-90^{\circ}$
$\angle A B C=90^{\circ}$
$\therefore \angle A B C+\angle B C D+\angle D+\angle A=360^{\circ}$ [sum of all angles]
$90^{\circ}+60^{\circ}+110^{\circ}+x=360^{\circ}$
$260^{\circ}+x=360^{\circ}$
$x=100^{\circ}$
(b) $\mathrm{HY}=7$ more than AE (given)
$\mathrm{HY}=7+\mathrm{AE}$
$\mathrm{OE}-3 \mathrm{~cm}$ and
$\mathrm{AE}-2$ (OE) [O is the bisector of the diagonals]
$\mathrm{AE}-2$ (3)
$\mathrm{AE}=6 \mathrm{~cm}$
$\mathrm{HY}=7+6$
$\mathrm{HY}=13 \mathrm{~cm}$
$\mathrm{HY}=\mathrm{OH}+\mathrm{OY} \quad$ [since $\mathrm{OH}=\mathrm{OY}$ as diagonals of parallelogram bisect each other]
$\mathrm{HY}=2(\mathrm{OH})$
$13=2(\mathrm{OH})$
$\mathrm{OH}=\frac{13}{2}=6.5 \mathrm{~cm}$
21.
(a) Name the quadrilateral with exactly one pair of sides parallel.
(b) Find the length of BD in the given Rectangle

Vedanth

Solution:
(a) Trapezium $\mathrm{AB} \| \mathrm{CD}$

(b)

In $\triangle A B C$
$A B=4 \mathrm{~cm}$
$\mathrm{BC}=3 \mathrm{~cm}$
$\angle A B C=90^{\circ}$
$A B^{2}+B C^{2}=A C^{2}[$ pythagoras theorem $]$
$(4)^{2}+(3)^{2}=A C^{2}$
$A C^{2}=25$
$A C=5 \mathrm{~cm}$
Diagonals of Rectangle are equal
$\mathrm{AC}-\mathrm{BD}$
$\mathrm{BD}=5 \mathrm{~cm}$.
22. Choose the quadrilaterals with their properties

Quadrilaterals	Properties
(a) Parallelogram	(i) Opposite sides equal
(b) Rhombus	(ii) Opposite angles equal
(c) Rectangle	(iii) diagonals bisect each other
(d) Square	(iv) diagonals are perpendicular to each
(e) Kite	other

Vedanth

	(v) each angle is a right angle (vi) diagonals are equal (vii) one of the diagonal bisects the other

Solution:

(a) - (i), (ii), (iii)
(b) - (i), (ii), (iii), (iv)
(c) - (i), (ii), (iii), (v), (vi)
(d) - (i), (ii), (iii), (iv), (v), (vi)
(e) - (vi), (iv)

