CHAPTER -3

UNDERSTANDING QUADRILATERALS

Please Note: Dear students after you all finish with chapter 1 start with chapter 3 .In this chapter we will learn about quadrilaterals in detail.
: See that after understanding, copy down the given notes as C.W.

STARTING WITH

- Curve : Any line drawn from a point without lifting the pen .

- Closed curve : It has no end point and encloses an area.

- Open curve: It has end points. Without any enclosed area.

- Simple curve : Curve that did not cross itself. E.g

- Non simple curve : Curve that crosses itself.
* Now let us know about polygons

* POLYGONS

A simple closed figure made up of line segments is called polygon
[A line segment have two end points]
EXAMPLES:
RECTANGLE :

SQUARE:

TRIANGLE :

Classifications of polygons

Polygons are classified on the basis of number of sides .

* NO. of sides *	Polygons *
3	Triangles
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

${ }^{-}$ANGLE SUM OF POLYGON : We have already studied about angle sum property of triangle.
Now here you will learn to find angle sum of polygon

```
Formula is : \((\mathrm{n}-2) \times 180\)
```

(Where $\mathrm{n}=$ no. of sides)

Triangle	$180=(3-2) \times 180$
Quadrilateral	$360=(4-2) \times 180$
pentagon	$540=(5-2) \times 180$
hexagon	$720=(6-2) \times 180$
octagon	$?$
Nonagon	$?$
Decagon	$?$

Now finding of measure of each interior angle of any regular polygon
Note: measure of each interior angle of a regular polygon $=(\mathrm{n}-2) \times 180$

THEREFORE:

Measure of each exterior angle $=360 / n$

IRREGULAR

CONCAVE
CONVEX
REGULAR

CONCAVE POLYGON : A polygon in which at least one of the angle is greater than 180° and one of its its diagonal lie in the exterior

CONVEX POLYGON : A polygon in which all interior angles are less than 180° and diagonals lie in the interior

REGULAR POLYGON : A polygon in which all the angles and sides are equal .

IRREGULAR POLYGON: A polygon in which all the angles and sides are equal .

DIAGONAL: A line segment which join the two non consecutive vertices in a polygon is called its diagonal

NOW WE COME TO QUADRILATERALS

(NOTE QUAD means 4 sides)
REMEMBER
*Sum angle of any quadrilateral is 360
*Diagonals of a quadrilateral always intersect each other
*TYPES OF QUADRILATERALS

1. SQUARE
2. RECTANGLE
3. PARALLEOGRAM
4. TRAPEZIUM
5. RHOMBUS
6. KITE

\therefore PROPERTIES OF QUADRILATERAL

QUADRILATERAL
Parallelogram: A quadrilateral with each pair of opposite sides parallel.

Rhombus:
A parallelogram
with sides of
equal length.

Rectangle:
A parallelogram with a right angle.

Square: A rectangle with sides of equal length.

Kite: A quadrilateral with exactly two pairs of equal consecutive sides

1) All angles are right angle
2) Opposite sides are equal and paralle
3) Diagonals are equal and bisect to eo other
4) It has 2 line of symmetry and 2 rotational symmetry
5) All sides are equal
6) All angles are right angle
7) Opposite sides are equal
8) Diagonals are equal and bisect to ec other at 90° (perpendicular)
9) Diagonals are bisector angle
10) The diagonals are perpendicular to each other
11) One of the diagonals bisects the ot
12) One pair of angles are equal
13) 2 pairs of consecutive sides of equa measure.
14) It has two diagonal of different
