C - 9 PHYSICS WK-4

SECOND EQUATION OF MOTION(POSITION-TIME RELATION)

$S=u t+1 / 2 a t^{2}$
Where, $\mathrm{u}=$ initial velocity, $\mathrm{a}=$ acceleration, $\mathrm{t}=$ time, $\mathrm{s}=$ distance
Q1) A racing car has a uniform acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What distance will it cover in 10 s after start?

THIRD EQUATION OF MOTION (POSITION-VELOCITY RELATION)
$V^{2}=u^{2}+2$ as
Where, $\mathrm{v}=$ final velocity
Q2) A train is travelling at a speed of $90 \mathrm{~km} / \mathrm{hr}$. Brakes are applied so to produce a uniform acceleration of -0.5 in $\mathrm{m} / \mathrm{s}^{2}$. Find how far the train will go before it is brought to rest.
$\mathrm{U}=90 \mathrm{~km} / \mathrm{hr}=90 \times 1000 \mathrm{~m} / 60 \times 60 \mathrm{~s}=25 \mathrm{~m} / \mathrm{s} ; \mathrm{v}=0 \mathrm{~m} / \mathrm{s}$

GRAPHICAL REPRESENTATION

Pictorial representation or geometrical representation between two quantities on two axes.

1) Time is taken on x axis and distance travelled is taken on y axis.
2) Speed of a body = slope of graph
3) For uniform speed,slope is inclined straight line.
4) For non-uniform speed,slope is a curved line
5) For stationary body,slope is a straight line parallel to time axis.

MORE POINTS TO

(7) First equation of motion;

$$
\begin{aligned}
& \text { Second equation of motion: } \\
& v=u+a t
\end{aligned}
$$

$$
\text { Third equation of motion: } \quad s=u t+\frac{1}{2} a t^{2}
$$

\square

$$
\begin{aligned}
& \text { where, } v=\text { final velocity, } u=\text { initial velocit. } \\
& \text { Distance covered }
\end{aligned}
$$

Distance covered $=$ Speed \times Time velocity, $s=$ distance, $a=$ acceleration, $t=$ timeFor non-uniform motion, average speed $=\frac{2 s}{l_{1}+l_{2}}$
Velocity of a body changing at uniform rate, average velocity $=\frac{v+u}{2}$Average velocity, $v_{a r}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$. If a journey is divided into two equal parts: one half of the distance with velocity v_{1} and other half with velocity v_{2}.
In uniform circular motion, acceleration $a=\frac{v^{2}}{r}$; where $v=$ uniform speed and $r=$ radius of circular
pathIf a body moves in a circular path, velocity $v=\frac{2 \pi r}{t}$
Angular velocity, $\omega=\frac{\theta}{l}$

